Paper Id: 120323
Roll No: \square

B TECH

(SEM-III) THEORY EXAMINATION 2019-20
BASIC SIGNALS \& SYSTEMS
Time: 3 Hours
Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
$2 \times 10=20$

Qno.	Question	Marks	C O
a.	Define signal. What are various types of signals?	2	1
b.	Differentiate between Invertible and Non-Invertible system.	2	1
c.	State and explain sampling theorem.	2	2
d.	State and prove time shifting property of Fourier Series.	2	2
e.	Deduce inverse laplace transform of $1 / \mathrm{s}(\mathrm{s}+4)$.	2	3
f.	Drive Laplace transform of sin$\omega \mathrm{t}$.	2	3
g.	What is the significance of state variable?	2	4
h.	What is the condition for the stability of a system?	2	4
i.	Drive time reversal property of z -transform.	2	5
j.	Find the z transform of $\mathrm{f}(\mathrm{nT})=\mathrm{e}^{-\mathrm{anT}} ; \mathrm{a}>0, \mathrm{n} \geq 0$	2	5

SECTION B

2. Attempt any three of the folowing: 10X3=30

Qno.	Question	Marks	CO
a.	find even and odd co ponent of the following signals (i) $x(t)=$ cost $+0^{\prime}$ int + cost sint (ii) $x(n)=\{, 2,1,4,5,0,3\}$	10	1
b.	Obtain the trigonometric Fourier series for the half wave rectified sine wave.		2
c.	Calculate the Laplace transform for the function $\mathrm{F}(\mathrm{t})=\mathrm{e}^{-\mathrm{at}}$ sinhbt.	10	3
d.	Obtain the state model for the electric network shown in figure. Select i_{L} and Vc as state variables.	10	4
e.	State and prove the time delay theorem and Parsavel's theorem of Ztransform.		5

D ownload all N O T E S and PAPE R S at StudentSuvidha.com

Paper Id: 120323
Roll No: \square

SECTION C

3. Attempt any one part of the following:

| Qno. | Question | Marks | CO |
| :--- | :--- | :--- | :--- | :--- |
| a. | Sketch the function
 (i)
 (ii)
 $\mathrm{x}(\mathrm{t})=\mathrm{u}(\mathrm{t})+2 \mathrm{u}(\mathrm{t})+3 \mathrm{u}(\mathrm{t}-4)-\mathrm{u}(\mathrm{t}-5)$
 $\mathrm{x}(\mathrm{t})=\mathrm{r}(\mathrm{t}+1)-\mathrm{r}(\mathrm{t})+\mathrm{r}(\mathrm{t} 2)$ | 10 | 1 |
| b. | Obtain F-V and F-I analogous system of mechanical system shown inn10
 figure. | 1 | |
| | | | |
| 4. Attempt any one part of the following: | | | |

Qno.	Question	Marks	CO
a.	For a transfer function $\mathrm{H}(\mathrm{s})=(\mathrm{s}+10) /(\mathrm{s}+3 \mathrm{~s}+2)$. Find the response10 due to input $\mathrm{x}(\mathrm{t})=\operatorname{Sin} 2(\mathrm{t}) \mathrm{u}(\mathrm{t})$.	3	
b.	Find the inverse Laplace transform of given function by using convolution theorem (i) $\mathrm{x}(\mathrm{s})=1 /\left(\mathrm{s}^{2}+\mathrm{a}^{2}\right)^{2}$	10	3

6. Attempt any one part of the following:

10X1=10

Qno.	Question	Marks	CO
a.	Consider the state equation shown below. $\left[\begin{array}{l} \dot{x}_{1} \\ \dot{x_{2}} \end{array}\right]=\left[\begin{array}{cc} 0 & 1 \\ -2 & -3 \end{array}\right]\left[\begin{array}{l} x_{1} \\ x_{2} \end{array}\right]+\left[\begin{array}{l} 0 \\ 1 \end{array}\right] u$ Determine the state transition equation $\mathrm{x}(\mathrm{t})$ when the input is unit step and $\mathrm{x}_{1}(0)=1, \mathrm{x}_{2}(0)=2$.	10	4
b.	Explain state transition matrix, its physicalsignificance and properties.	10	4

D ownload all N O T E S and PA PE R S at StudentSuvidha.com

\square
7. Attempt any one part of the following:
$10 \times 1=10$

Qno.	Question	Marks	CO		
a.	State and prove time shifting property of Z-transform. Also find the inverse Z-transform of given function using convolution theorem. $x_{1}(z)=\frac{1}{1-a z^{-1}}, R O C:[z]>[a]$ $x_{2}(z)=\frac{1}{1-z^{-1}}, R O C:[z]>[1]$	5			
b.	For the discrete system described by the difference equation y(n) $=0.6 y(n-1)-0.08 y(n-2)+x(n) . ~ D e t e r m i n e: ~$				
(i)The unit sample response sequence, $\mathrm{h}(\mathrm{n})$,					
(ii)The step response.				$\quad 10$	5
:---					

