Paper Id: 120323

Roll No:

B TECH (SEM-III) THEORY EXAMINATION 2019-20 BASIC SIGNALS & SYSTEMS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

Qno.	Question	Marks	С
			О
a.	Define signal. What are various types of signals?	2	1
b.	Differentiate between Invertible and Non-Invertible system.	2	1
c.	State and explain sampling theorem.	2	2
d.	State and prove time shifting property of Fourier Series.	2	2
e.	Deduce inverse laplace transform of 1/s(s+4).	2	3
f.	Drive Laplace transform of sinωt.	2	3
g.	What is the significance of state variable?	2	4
h.	What is the condition for the stability of a system?	2	4
i.	Drive time reversal property of z-transform.	2	5
j.	Find the z transform of $f(nT) = e^{-anT}$; $a>0$, $n \ge 0$	2	5

SECTION B

2. Attempt any three of the following: 10X3=30

Qno.	Question	Marks	CO
a.	find even and odd component of the following signals	10	1
	(i) $x(t) = cost + sint + cost sint$		
	(ii) $x(n) = \{12,1,4,5,0,3\}$		
b.	Obtain the trigonometric Fourier series for the half wave rectified sir	e10	2
	wave.		
c.	Calculate the Laplace transform for the function $F(t) = e^{-at} \sinh bt$.	10	3
d.	Obtain the state model for the electric network shown in figure. Select	10	4
	i _L and Vc as state variables.		
	R L		
	+ V _R - + V _L -		
	vs + v _c + c		
e.	State and prove the time delay theorem and Parsavel's theorem of Z	-10	5
	transform.		

Paper Id:

120323

				2	oub	Cod	e:K	EE3	03
Roll No:									

SECTION C

3. Attempt any *one* part of the following:

10X1=10

Qno.	Question	Marks	CO
a.	Sketch the function	10	1
	(i) $x(t)=u(t)+2u(t)+3u(t-4)-u(t-5)$ (ii) $x(t)=r(t+1)-r(t)+r(t-2)$		
b.	Obtain F-V and F-I analogous system of mechanical system shown figure.	in10	1
	b k F		

4. Attempt any *one* part of the following:

10X1=10

Qno.	Question	Marks	CO
a.	Explain the trigonometric and exponential form of Fourier series representation of periodic signal. Find the Fourier transform of given signal shown in fig.	10	2
b.	State and prove duality property of Fourier transform. Find the inverse fourier transform of	10	2
	$X(j\omega) = \begin{cases} 2c\alpha M_{\rm c}^{\rm d} \omega < \pi \\ \omega > \pi \end{cases}$		

5. Attempt any one part of the following:

10X1=10

Qno.	Question	Marks	CO
a.	For a transfer function H (s) = $(s+10)/(s+3s+2)$. Find the respons	e10	3
	due to input $x(t) = \sin 2(t) u(t)$.		
b.	Find the inverse Laplace transform of given function by using	10	3
	convolution theorem (i) $x(s) = 1/(s^2+a^2)^2$ (ii) $x(s) = s/(s+1)(s+2)$		

6. Attempt any one part of the following:

10X1=10

Qno.	Question	Marks	CO
a.	Consider the state equation shown below.	10	4
	$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$ Determine the state transition equation x(t) when the input is unit step		
	and $x_1(0)=1$, $x_2(0)=2$.		
b.	Explain state transition matrix, its physical significance and properties.	10	4

Paper Id: 120323

Roll No:							

7. Attempt any *one* part of the following:

10X1=10	

Qno.	Question	Marks	CO
a.	State and prove time shifting property of Z-transform. Also find the inverse Z-transform of given function using convolution theorem. $x_1(z) = \frac{1}{1 - az^{-1}}, ROC: [z] > [a]$ $x_2(z) = \frac{1}{1 - z^{-1}}, ROC: [z] > [1]$	10	5
b.	For the discrete system described by the difference equation $y(n) = 0$. $6y(n-1)-0.08y(n-2)+x(n)$. Determine: (i)The unit sample response sequence, $h(n)$, (ii)The step response.	10	5